
RAPID COMMUNICATIONS

PHYSICAL REVIEW E JUNE 1999VOLUME 59, NUMBER 6
Robustness of supersensitivity to small signals in nonlinear dynamical systems
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Nonlinear dynamical systems possessing an invariant subspace can display interesting dynamical behavior,
such as on-off intermittency and bubbling. This Rapid Communication shows that a class of such systems has
amazing features of~1! supersensitivity to small input signals and~2! robustness of the supersensitivity in the
presence of noise. These features make the systems very promising as small signal detectors.
@S1063-651X~99!50206-7#
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Nonlinear dynamical systems with an invariant subsp
due to symmetries or other constraints are of great inter
An example is the synchronization of coupled chaotic s
tems @1#. Such systems can display interesting and unus
dynamical behaviors, such as on-off intermittency@2# and
bubbling @3#. In on-off intermittency, the invariant manifold
is slightly unstable and the system can remain close to
invariant manifold for long periods of time, interrupted on
by some occasional large bursts away from the invar
manifold. In bubbling, the invariant manifold is stable. How
ever, there are unstable invariant sets embedded in the
otic sets, and small perturbations of noise or parameter m
matches can result in large intermittent bursts. This can
harmful in connection with applications of synchronizatio
such as in secure communication@4#, because high quality
synchronization is destroyed by bubbling@3#.

The purpose of this Rapid Communication is to show t
such systems are very sensitive to small constant or ti
dependent input signals. With an additional symmetri
condition, the sensitivity is robust to external noise, wh
makes the systems very promising for potential applicati
to weak signal detection.

In spite of the variety of such systems, their behavior c
often be described by the following equations:

yn115G~xn ,yn ,a!, ~1!

xn115F~xn ,yn ,a!, ~2!

whereG(xn,0,a)50 and the variablesyn and xn represent
the distance from the invariant manifoldy50 and the dy-
namics within the invariant subspace, respectively. In g
eral, y andx are vectors. Note that many generic propert
of the above phenomena can be observed in some
simple systems, and we considerx andy as one-dimensiona
variables. Herea is a parameter that may change the dyna
ics within the invariant subspace as well as their stabil
We are interested in the behavior of the system close to
invariant manifold where the systems can be represente
the approximate linear dynamics:

yn115g~xn ,a!yn1O~yn
2!, ~3!

xn115 f ~xn ,a!1O~yn!. ~4!
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The nonlinearity of the systems serves to keep the solu
bounded. Usually, chaotic signals have quickly~exponen-
tially! decaying correlation. It is often plausible to assum
that the chaotic signals are not correlated when conside
the long time behavior of the system in Eq.~3!. Based on this
assumption, and for the sake of simplicity and without lo
of generality, we are led to consider the behavior of t
following simple random driven map:

yn115axnyn1O~yn
2!, ~5!

wherexn is a random driving signal. Introducing the variab
zn5 lnuynu, Eq. ~5! becomes

zn115zn1 lnuxnu1 lnuau. ~6!

The critical value of the parametera is defined by lnuacu
1^lnuxnu&50, where^•••& represents the time average. Clo
to the critical pointd5(a2ac)/ac!1, Eq.~6! can be rewrit-
ten as

zn115zn1d1jn , ~7!

wherejn5 lnuxnu2^lnuxnu& is a random variable with vanish
ing mean and varianceD.

To analyze the long time behavior, map~7! can be re-
placed by the corresponding stochastic differential equat
which is the equation for Brownian motion in one dimensi
with a drift. The corresponding Fokker-Planck equation is

]W

]t
52d

]W

]z
1

D

2

]2W

]z2
, ~8!

and the static solution of the probability densityW is W(z)
5Cexp(az) with a52d/D. In the variabley, the distribution
becomesW(y)5Cuyua21.

Now let us consider that there is a small positive const
input p to the system of Eq.~5!, namely, yn115axnyn

1O(yn
2)1p, wherep is the order of 102m,m@1 ~suppose

the maximal value ofyn has the order of unity!. For simplic-
ity, we suppose thatyn.0 for initial value y0.0 and p
.0. For yn@p, the behavior of the system is governed
Eqs. ~5! and ~7!. The effect of the small input can be re
garded as a reflecting barrier to the Brownian motion of
system~7!, i.e., z>2m. On the other hand, the state of th
R6243 ©1999 The American Physical Society
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system is bounded by the nonlinearity of the system. We
introduce a parametert to represent the effect of up
boundary of the system. Based on these considerations
behavior of the system with inputp can be understood by th
Brownian motion confined between the two boundaries. T
property of the system is determined by the competition
tween the constant driftd and the diffusionD. The diffusion
is dominant ford;0, i.e., for parametera close to the criti-
cal pointac where the system displays on-off intermitten
~bubbling! and can access to both the lower and up
boundaries frequently, becoming sensitive to the small in
and producing large bursts. Otherwise, the drift becom
dominant whena is far away from the critical point; fora
,ac , the system will spend most of its time close to t
lower boundary and produce rare large bursts, and the s
input does not lead to significant large output in the syste
for a.ac , the system will spend most of its time close to t
upper boundary, and will rarely access the level of the inp
also, the small input does not have significant effects on
system behavior. We can expect that the system is sens
to small input when it is on-off intermittent.

The above consideration leads to the normalization c
dition *p

tCya21dy51, which givesC5a/(ta2pa). Now
we can estimate the amplitude of the output signals by
ensemble average

^y&5CE
p

t

yady5
a

11a

tb2p

b21
, ~9!

whereb5(t/p)a.
If b'1, the small input can change the behavior of t

system greatly. For the conditionsuau!1, t@p and
uau ln(t/p)!1, one hasb'11a ln(t/p) and

^y&'
t

ln~t/p!
. ~10!

Equation~10! shows that the average value decrease
zero with the decrease of inputp only logarithmically, sug-
gesting that close to the critical point, a very small inpup
can produce a relatively large output, i.e., the system is
persensitive to small input. A measure of the sensitivity c
be

S5
^y&
p

5
t

p ln~t/p!
. ~11!

For example, witht51 and p510215, the value ofS is
about 2.931013.

To demonstrate the validity of the above analysis,
carry out simulations with the following two systems of th
form yn115axnf (y)1p. For system I,f (y) is a piecewise
linear map
n
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c1

c2
~2c12c22y!, y,2c1

y, uyu<c1

c1

c2
~c11c22y!, y.c1 ,

~12!

where the parametersc1 andc2 are chosen so thatyn.0 for
the positive initial valuey0 and p, i.e., the bursting in the
system is symmetry breaking@5#. We usec151 andc252
in our simulations, withxn uniform on @0,1# and thusac
5e52.71828 . . . andD51. For system II,f (y)5sin(y),
and xn is a chaotic signal generated by the logistic m
xn1153.75xn(12xn), which gives xn a distribution with
singularities, andac'1.673 andD50.2. S is estimated close
to the critical point for these two systems. Withp5102m, S
as a function ofm is shown in Fig. 1~a!. The analytical esti-
mation in Eq.~11! with t51.8 andt51.4 gives good ap-
proximation to the simulation results. Figure 1~b! shows the
dependence ofS on parameter deviationd from the critical
point. The sensitivity is maintained over a large range of
parametera.

The feature of supersensitivity is maintained even
time-dependent signals, for example,

pn1N5pn5H p, 0,n<N/2

2p, N/2,n<N.
~13!

In order for the system to have a symmetrical response p
erty to positive and negative inputs, we require that the m
f (y) have odd symmetryf (2y)52 f (y), and on-off inter-
mittency in the system is symmetry breaking, so that a po
tive ~negative! small input will eventually lead to only posi
tive ~negative! output. ForN@N0, whereN0 is the relaxation
time of the system, the sensitivity can be measured by
~11!.

The feature of supersensitivity makes the systems v
promising for application as a sensitive device for small s
nals. In the context of application, we should consider
behavior of the system in the presence of additive no
namely, yn115axnf (yn)1pn1en , where en is a small
Gaussian white noise with zero mean and standard devia
s. We can study the long time behavior of the system by
corresponding stochastic differential equationdy/dt5(d
1j)y1p1e. The Fokker-Planck equation is

FIG. 1. ~a! Dependence of the sensitivityS close to the critical
point of the systems on inputp5102m. ~b! Dependence ofS on d
for p510210.
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]W

]t
52

]

]y F S d1
D

2 D yWG1
1

2

]2

]z2
@~Dy21s2!W#,

~14!

and the static solution under the adiabatic conditionN@N0
is given by

W~y!5CS y21
s2

D D (a21)/2

expF 2p

ADs
arctan

ADy

s G .

~15!

This distribution, however, is very complicated for evalu
ing ^y&. To simplify the calculation, we employ the simila
heuristic boundary conditions in the above. Under the con
tions s!AD, p;s, we approximate the distribution by

W~y!5H Cuyua21 expF pp

ADs
sgn~y!G , uyu>p

0, uyu,p.

~16!

It is clear that, by the limits→0, we come back to the resu
for the noise-free case. With this approximation, we obt
that, close to the critical point,

^y&'

E
2t

t

yW~y!dy

E
2t

t

W~y!dy

5
t

ln~t/p!
tanhS p

AD
RD , ~17!

whereR5p/s provides a natural measure of the signal-
noise ratio.

The above analysis is demonstrated by numerical sim
tions in the presence of noise. Figure 2~a! is a typical re-
sponse of the system to a noisy small signal, and Fig. 2~b!
shows^yn& for different values ofR. Figure 2~c! displays the
dependence of̂y& on R. It is apparent that the above ap
proximate analysis gives a good account of the results
large range ofR. Over a wide range ofR, ^y& is very close to
that of the noise-free case. The supersensitivity is thus ro
to additive noise. This feature of sensitivity is quite differe
from that of the sensitivity near the onset of a perio
doubling bifurcation in many dynamical systems@6#. There
the system is only sensitive to perturbations near half
fundamental frequency of the system for a bifurcation
rameter very close to the onset point.

To examine the performance of the system as a sm
signal detector, we calculate the probability of bit errorPb in
the presence of additive noise. The detection is done by
amining the time average of the outputyn in the duration of
an input bitbk , namelysk51/N(N(k21)11

Nk yn . A bit bk is
detected asBk51 (21) if sk.0 (,0). For N@N0, the
variablesk is expected to fluctuate around^y&. Although yn
cannot be assumed to be uncorrelated, for very largeN, it
might still be plausible to assume thatsk approaches a
Gaussian distribution with an average^y& and a variance
DN5D/N, especially in the case in whichR is small andyn
has a comparable distribution to positive and negative
ues. Based on this assumption,Pb can be evaluated approx
mately as
-

i-
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-

a-

a
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Pb5Prob~BkÞbk!5Prob~skbk,0!

'
1

2 F12erfSAN

D
^y& D G , ~18!

where^y& is given by Eq.~17!.
In our simulations, we estimatePb with 106 random bits

in system I at a52.6 for input levels p51024 and p
51026. The quantitiesN0 andD are estimated in simulation
with constant input, givingN05350, D55 for p51024 and
N05700, andD54 for p51026. Both the results ofPb
from simulations and from estimation in Eq.~18! are shown
in Fig. 3 for N53N0 ,5N0 ,10N0 ,15N0. The parametert,
used to fit Eq.~18! to the simulation results, ist51.4 for
p51024 andt51.1 for p51026. It is apparent that the es
timation can be quite good forN much larger thanN0. For N
comparable toN0, the effects of the transient process duri
the relaxation time becomes significant, and the estima
deviates from the simulation results. ForR getting larger, the
bursting behavior becomes more asymmetrical,sk can no
longer be approximated by a Gaussian distribution, and
estimation also deviates from the simulations results.

The above results show that detection error can be q
low even for a small signal with a level much lower than t

FIG. 2. ~a! An example of the bursting behavior of the system
with a52.6, N54000,p51025, andR50.1.~b! Time series of the
ensemble averagêyn& over 5000 samples for the system I witha
52.6, p51025, andN54000. The three plots are~1! for the noise-
free case,~2! for R50.2, and~3! for R50.05.~c! Ensemble average
^y& close to the critical point as a function ofR for constant input
p51025. The solid lines are an estimation of Eq.~17!.
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environment noise if the signal has a bit duration mu
larger than the relaxation time of the system. Related to t
there seems to be a frequency cutoff above which detec
becomes unreliable. This frequency gets larger as the in
level increases, because the relaxation time becomes sh
for a higher level of input.

The above properties of supersensitivity and its robu
ness in the presence of noise is universal in a general cla
coupled symmetrical systems displaying on-off intermitten
with symmetry breaking. The sensitivity is due to the pow
law distribution of on-off intermittency ofy in a wide inter-
val 102m,uyu,t, so that the system can have access to
level of the small input, and at the same time produce
quent large bursts. If the maps are not coupled to random
chaotic drivingxn , there is no diffusion in the system (D

FIG. 3. Probability of bit errorPb as a function ofR for differ-
ent levels of input and different bit durations. The solid lines are
estimation of Eq.~18!. ~a! p51024, N05350, D55, andt51.4.
~b! p51026, N05700, D54, andt51.1.
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50), and the small input does not have a significant effect
the system output. For uncoupled non-on-off maps, nam
yn115a f(yn), if a,1 ~for the maps in the above!, the fixed
point y50 is stable, and the small input cannot produce
large output at all; ifa.1, the stateyn can no longer come
to the level of a small input of the orderp5102m(m.1)
with significant frequency, and the output will not manife
the small input. In both cases, the systems do not posses
sensitivity in the coupled, on-off intermittent systems. T
symmetry breaking of the bursting also plays an import
role in the sensitivity and robustness because, under this
dition, a transition of the state betweeny.0 and y,0 is
determined only by the switch of the small signal. If th
bursting is not symmetry breaking, there are additional tr
sitions betweeny.0 andy,0 induced by bursting states
which will degrade the sensitivity and robustness.

In conclusion, we demonstrate that a class of nonlin
dynamical systems, having an invariant subspace and
playing on-off intermittency and bubbling, have the featu
of supersensitivity to small constant or time-dependent in
signals. With an additional odd symmetry condition, the s
sitivity is robust to additive noise. The features make t
systems very promising for such useful applications as s
sitive devices.
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