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Robustness of supersensitivity to small signals in nonlinear dynamical systems
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Nonlinear dynamical systems possessing an invariant subspace can display interesting dynamical behavior,
such as on-off intermittency and bubbling. This Rapid Communication shows that a class of such systems has
amazing features dfl) supersensitivity to small input signals a(®) robustness of the supersensitivity in the
presence of noise. These features make the systems very promising as small signal detectors.
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PACS numbegps): 05.45-a

Nonlinear dynamical systems with an invariant subspac&he nonlinearity of the systems serves to keep the solution
due to symmetries or other constraints are of great intereshounded. Usually, chaotic signals have quickéxponen-
An example is the synchronization of coupled chaotic systially) decaying correlation. It is often plausible to assume
tems[1]. Such systems can display interesting and unusuahat the chaotic signals are not correlated when considering
dynamical behaviors, such as on-off intermittej@} and the long time behavior of the system in Eg). Based on this
bubbling[3]. In on-off intermittency, the invariant manifold assumption, and for the sake of simplicity and without loss
is slightly unstable and the system can remain close to thef generality, we are led to consider the behavior of the
invariant manifold for long periods of time, interrupted only following simple random driven map:
by some occasional large bursts away from the invariant 5
manifold. In bubbling, the invariant manifold is stable. How- Yn+1=aX,Ynt O(Yy), )
ever, there are unstable invariant sets embedded in the cha- . - . . .
otic sets, and small perturbations of noise or parameter mis/Nerex, is a random driving signal. Introducing the variable
matches can result in large intermittent bursts. This can bén:|n|yn|’ Eq. (5) becomes
harmful in connection with applications of synchronization,
such as in secure communicatipf], because high quality
synchronization is destroyed by bubblifj. The critical value of the parameter is defined by Ife|
The purpose of this Rapld Communication is to show that+<|n|xn|>:o, Where< .. > represents the time average. Close

such systems are very sensitive to small constant or timep the critical points= (a—a.)/a.<1, Eq.(6) can be rewrit-
dependent input signals. With an additional symmetricaken as

condition, the sensitivity is robust to external noise, which
makes the systems very promising for potential applications Zni1=Zn T O+ &y, )
to weak signal detection. ) ) ) )

In spite of the variety of such systems, their behavior cavhere &= Infx[—(Infx,|} is a random variable with vanish-

Zn+1=2Z,+In|x,|+In|al. (6)

often be described by the following equations: ing mean and varianc®. _
To analyze the long time behavior, m@p) can be re-
Yns1=G(Xy,Yn,a), (1) placed by the corresponding stochastic differential equation,
which is the equation for Brownian motion in one dimension
Xnr1=F (X, Yn,8), ) with a drift. The corresponding Fokker-Planck equation is
where G(x,,0,2) =0 and the variabley, and x,, represent M_ _ MJF E 32_W ®
the distance from the invariant manifold=0 and the dy- ot az 2 572’

namics within the invariant subspace, respectively. In gen-

eral,y andx are vectors. Note that many generic propertiesand the static solution of the probability densityis W(z)

of the above phenomena can be observed in some vertCexp(az) with «=246/D. In the variabley, the distribution
simple systems, and we consideandy as one-dimensional becomesN(y)=Cl|y|* 1.

variables. Hera is a parameter that may change the dynam- Now let us consider that there is a small positive constant
ics within the invariant subspace as well as their stability.input p to the system of Eq(5), namely, y,,1=aX,y,

We are interested in the behavior of the system close to the- O(y2)+ p, wherep is the order of 10™ m>1 (suppose
invariant manifold where the systems can be represented lfie maximal value of,, has the order of uniy For simplic-

the approximate linear dynamics: ity, we suppose thay,>0 for initial value y,>0 andp
>0. Fory,>p, the behavior of the system is governed by
Ynr1=0(Xn,8)Yn+O(Y3), (3 Egs.(5) and (7). The effect of the small input can be re-
garded as a reflecting barrier to the Brownian motion of the
Xn+1=f(Xp,2)+O(y,). (4) system(7), i.e.,z=—m. On the other hand, the state of the
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system is bounded by the nonlinearity of the system. We car 1° ———
introduce a parameter to represent the effect of up- A e S /
boundary of the system. Based on these considerations, th 1" S

2 system [l
esysteml .00t

| -~ Eq.(15) t=14

behavior of the system with inpptcan be understood by the © » 10° ot

Brownian motion confined between the two boundaries. The ' | ) o . .i° ]

property of the system is determined by the competition be- ’ @ ©

tween the constant dri#§ and the diffusiorD. The diffusion R 5 10 15 Ly a— - o ot
m

is dominant for6~0, i.e., for parametea close to the criti-
cal pointa. where the system displays on-off intermittency  FIG. 1. () Dependence of the sensitivi§yclose to the critical
(bubbling and can access to both the lower and uppepoint of the systems on inpyi=10"". (b) Dependence oS on &
boundaries frequently, becoming sensitive to the small inpufor p=10"1.

and producing large bursts. Otherwise, the drift becomes

dominant whera is far away from the critical point; foa [ c,

<a., the system will spend most of its time close to the C—Z(—Cl—cz—)’), y<—-¢

lower boundary and produce rare large bursts, and the small

input does not lead to significant large output in the system; fiy)y=¢ ¥ lyl<cy (12)
for a>a_, the system will spend most of its time close to the (o

upper boundary, and will rarely access the level of the input; C—2(01+Cz—y), y=Ci,

also, the small input does not have significant effects on the \

system behavior. We can expect that the system is sensitive

to small input when it is on-off intermittent.
The above consideration leads to the normalization con\-Nhere the parameters andc, are chosen so tha,>0 for

. e . : B « o the positive initial valuey, andp, i.e., the bursting in the
Py /S 5 ety eaki) We sen, 1 ands 2
ensemble average P P 9 Y % our simulations, withx, uniform on[0,1] and thusa,

=e=2.7188 ... andD=1. For system IlI,f(y)=sin(y),
and x,, is a chaotic signal generated by the logistic map
B Xnt+1=3.7%,(1—X,), which givesx, a distribution with
<y>=CJ7y“dy= e ﬂ (9  singularities, anc,~1.673 ancD = 0.2. Sis estimated close
p 1+ta -1 to the critical point for these two systems. Witk=10"", S
as a function ofn is shown in Fig. 1a). The analytical esti-
mation in Eq.(11) with r=1.8 andr=1.4 gives good ap-
where 8= (7/p)“. proximation to the simulation results. Figuré)l shows the
If B~1, the small input can change the behavior of thedependence o8 on parameter deviatiod from the critical
system greatly. For the conditionke|<<1, 7>p and point. The sensitivity is maintained over a large range of the
|@|In(7/p)<1, one hagB~1+ aln(#/p) and parameter.
The feature of supersensitivity is maintained even for
time-dependent signals, for example,

,
W)= In(=/p)’ (10 p, 0<n=N/2

Pren=Pn=) 0 Nj2<n=N. (13

Equation(10) shows that the average value decreases to

zero with the decrease of inpptonly logarithmically, sug-, order for the system to have a symmetrical response prop-

gesting that close to the critical point, a very small input oy 44 hositive and negative inputs, we require that the map
can produce a relatively large output, i.e., the system is suf(y) have odd symmetr§(—y)=—f(y), and on-off inter-

persensitive to small input. A measure of the sensitivity Car}nittency in the system is symmetry breaking, so that a posi-

be tive (negative small input will eventually lead to only posi-
tive (negative output. ForlN> N, whereNy is the relaxation
time of the system, the sensitivity can be measured by Eq.
=W T 1y @D
p pin(s/p)’ The feature of supersensitivity makes the systems very
promising for application as a sensitive device for small sig-
nals. In the context of application, we should consider the
For example, withr=1 and p=1015 the value ofSis  behavior of the system in the presence of additive noise,
about 2.% 10", namely, y,.1=ax,f(y,) +pnt+€,, wheree, is a small
To demonstrate the validity of the above analysis, weGaussian white noise with zero mean and standard deviation
carry out simulations with the following two systems of the o. We can study the long time behavior of the system by the
form y,,=ax,f(y)+p. For system I f(y) is a piecewise corresponding stochastic differential equatioly/dt= (45
linear map +£)y+p+e. The Fokker-Planck equation is
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IW d D w 1 42 DVt o2
—=——|| 6+ = +-— +
ot ay 7 |YW|+ 5 LDy o )W],

(14

and the static solution under the adiabatic condition N,
is given by

2\ (a—1)/2 2 0.15
W(y)=C| y?+ % ;{—parctanﬁl !
VDo 0.05 2 8
(15 X
v

0 2000 4000 6000 8000

3
This distribution, however, is very complicated for evaluat- —005 1 % J
ing (y). To simplify the calculation, we employ the similar _o15 LO® , ‘ ‘
heuristic boundary conditions in the above. Under the condi- 0 2000 4000 6000 8000
tions o< D, p~ ¢, we approximate the distribution by n
7P
CIyI“‘lexr{—sgr(y), lyl=p
W(y)= VDo (16)
~1 ST AT T i s e — — — —
0, lyl<p. 10 f

- system |, a=2.718

,\ a =
Itis clear that, by the limi— 0, we come back to the result ¥ ystem Il a-1 672

—— Eq.(17), =14

for the noise-free case. With this approximation, we obtain — Eq.(17), :=1-8
that, close to the critical point,

4 (c)

yW(y)dy - | |
(y)~—ro — " tanH =R (17) 10 10" 10° 10’
T In(7/p) D |’
f ~ W(y)dy /o :

FIG. 2. (a) An example of the bursting behavior of the system |
with a=2.6, N=4000,p=10"°, andR=0.1.(b) Time series of the
ensemble averag(eyn) over 5000 samples for the system | wih
=2.6,p=10"% andN=4000. The three plots arf@) for the noise-
ee case(2) for R=0.2, and(3) for R=0.05.(c) Ensemble average
(y) close to the critical point as a function Bffor constant input
p=10"5. The solid lines are an estimation of H4.7).

whereR=p/o provides a natural measure of the signal-to-
noise ratio.

The above analysis is demonstrated by numerical S|mulafr
tions in the presence of noise. Figuré)2is a typical re-
sponse of the system to a noisy small signal, and Fig) 2
shows(y,,) for different values oR. Figure Zc) displays the
dependence ofy) on R. It is apparent that the above ap- P,=Prol B, #b,) =Prol{s,b,<0)
proximate analysis gives a good account of the results in a
large range oR. Over a wide range dR, (y) is very close to
that of the noise-free case. The supersensitivity is thus robust 51— erf( \[(W” (18)
to additive noise. This feature of sensitivity is quite different
from that of the sensitivity near the onset of a period-where(y) is given by Eq.(17).
doubling bifurcation in many dynamical systef€. There In our simulations, we estimate, with 10° random bits
the system is only sensitive to perturbations near half then system | ata=2.6 for input levelsp=10"* and p
fundamental frequency of the system for a bifurcation pa—=10-6. The quantitiesN, andA are estimated in simulation
rameter very close to the onset point. with constant input, givingNo=350, A=5 for p=10"* and

To examine the performance of the system as a smalj,=700, andA=4 for p=10"°. Both the results ofP,
signal detector, we calculate the probability of bit efrin  from simulations and from estimation in E(L8) are shown
the presence of additive noise. The detection is done by eXn Fig. 3 for N=3Ng,5N,10N,,15N,. The parametetr,
amining the time average of the outpytin the duration of  ysed to fit Eq.(18) to the simulation results, is=1.4 for
an input bitby, namelys,= 1N\ 1), 1Y A bit b is  p=10"% andr=1.1 for p=107°. It is apparent that the es-
detected adB3,=1 (—1) if 5,>0 (<0). For N>N,, the  timation can be quite good fod much larger tham,. ForN
variables, is expected to fluctuate aroudgl). Althoughy, comparable td\,, the effects of the transient process during
cannot be assumed to be uncorrelated, for very IdNgé  the relaxation time becomes significant, and the estimation
might still be plausible to assume tha} approaches a deviates from the simulation results. FRgetting larger, the
Gaussian distribution with an averagg) and a variance bursting behavior becomes more asymmetrisalcan no
Dn=A/N, especially in the case in whidRis small andy,  longer be approximated by a Gaussian distribution, and the
has a comparable distribution to positive and negative valestimation also deviates from the simulations results.
ues. Based on this assumptidt, can be evaluated approxi- The above results show that detection error can be quite
mately as low even for a small signal with a level much lower than the
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=0), and the small input does not have a significant effect on
the system output. For uncoupled non-on-off maps, namely,
Vs 1=af(y,), if a<l (for the maps in the aboygthe fixed
point y=0 is stable, and the small input cannot produce a
large output at all; ifa>1, the statey,, can no longer come
to the level of a small input of the ordgr=10""(m>1)
with significant frequency, and the output will not manifest
the small input. In both cases, the systems do not possess the
FIG. 3. Probability of bit erroP, as a function oR for differ-  Sensitivity in the coupled, on-off intermittent systems. The
ent levels of input and different bit durations. The solid lines are arSymmetry breaking of the bursting also plays an important
estimation of Eq(18). (a) p=10%, N,=350, A=5, andr=1.4.  role in the sensitivity and robustness because, under this con-
(b) p=10"%, N,=700,A=4, andr=1.1. dition, a transition of the state betwegn>0 andy<O0 is
determined only by the switch of the small signal. If the

environment noise if the signal has a bit duration muchburstmg is not symmetry breaking, there are additional tran-

larger than the relaxation time of the system. Related to thi%ﬂ%?}svaﬁt\g: gergjeothaeng gr;gn/:rt];/j l;i%drgguz?rzztslgg states,

there seems to be a frequency cutoff above which detection In conclusion, we demonstrate that a class of nonlinear

becomes unreliable. This frequency gets larger as the inpuy

. 2 namical systems, having an invariant subspace and dis-
If(e)\r/e{; Ir?i;rheearsli'e??)??r?xtthe relaxation time becomes Shorp%\‘aying on-off intermittency and bubbling, have the feature

The above properties of supersensitivity and its robust-Of supersensitivity to small constant or time-dependent input

ness in the presence of noise is universal in a general class si]gnals. With an additional odd symmetry condition, the sen-
coupled s rgmetrical svstems displavin on-of?intermittenc itivity is robust to additive noise. The features make the

up y SY playing ysystems very promising for such useful applications as sen-
with symmetry breaking. The sensitivity is due to the power-_:.. :

A . . . A sitive devices.

law distribution of on-off intermittency of in a wide inter-
val 100 "<|]y|< 7, so that the system can have access to the
level of the small input, and at the same time produce fre- This work was supported in part by Research Grant No.
quent large bursts. If the maps are not coupled to random dRP960689 at the National University of Singapore. C. Zhou
chaotic drivingx,, there is no diffusion in the systenD(  was supported by NSTB.
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